Publications
Regina Beets-Tan
2024
-
IMPORTANT-Net: Integrated MRI multi-parametric increment fusion generator with attention network for synthesizing absent dataInformation FusionT. Zhang, T. Tan, L. Han, X. Wang, Y. Gao, J. Van Dijk, A. Portaluri, A. Gonzalez-Huete, A. D’Angelo, C. Lu, J. Teuwen, R. Beets-Tan, Y. Sun, R. Mann, 2024, 108
Abstract
Loading... -
Enhancing Cross-Modal Medical Image Segmentation through CompositionalityA. Eijpe, V. Corbetta, K. Chupetlovska, R. Beets-Tan, W. Silva, 2024
Abstract
Loading... -
FedGS: Federated Gradient Scaling for Heterogeneous Medical Image SegmentationP. Schutte, V. Corbetta, R. Beets-Tan, W. Silva, 2024
Abstract
Loading... -
Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from MammogramsLecture Notes in Computer ScienceX. Wang, T. Tan, Y. Gao, E. Marcus, L. Han, A. Portaluri, T. Zhang, C. Lu, X. Liang, R. Beets-Tan, J. Teuwen, R. Mann, 2024
Abstract
Loading... -
Improving Neoadjuvant Therapy Response Prediction by Integrating Longitudinal Mammogram Generation with Cross-Modal Radiological Reports: A Vision-Language Alignment-Guided ModelLecture Notes in Computer ScienceY. Gao, H. Zhou, X. Wang, T. Zhang, L. Han, C. Lu, X. Liang, J. Teuwen, R. Beets-Tan, T. Tan, R. Mann, 2024
Abstract
Loading... -
Overcoming data scarcity in radiomics/radiogenomics using synthetic radiomic featuresComputers in Biology and MedicineM. Ahmadian, Z. Bodalal, H. J. Van Der Hulst, C. Vens, L. Karssemakers, N. Bogveradze, F. Castagnoli, F. Landolfi, E. K. Hong, N. Gennaro, A. D. Pizzi, R. G. Beets-Tan, M. W. Van Den Brekel, J. A. Castelijns, 2024
Abstract
Loading... -
Reproducing RECIST lesion selection via machine learning: Insights into intra and inter-radiologist variationEuropean Journal of Radiology OpenT. M. Tareco Bucho, L. Petrychenko, M. A. Abdelatty, N. Bogveradze, Z. Bodalal, R. G. Beets-Tan, S. Trebeschi, 2024, 12
Abstract
Loading... -
Multi-sequence MRI radiomics of colorectal liver metastases: Which features are reproducible across readers?European Journal of RadiologyD. J. Van Der Reijd, K. Chupetlovska, E. Van Dijk, B. Westerink, M. A. Monraats, J. J. Van Griethuysen, D. M. Lambregts, R. Tissier, R. G. Beets-Tan, S. Benson, M. Maas, 2024, 172
Abstract
Loading... -
Improving Rectal Tumor Segmentation with Anomaly Fusion Derived from Anatomical Inpainting: A Multicenter StudyL. Cai, M. A. Abdelatty, L. Han, D. Lambregts, J. Van Griethuysen, E. Pooch, R. G. Beets-Tan, S. Benson, J. Brunekreef, J. Teuwen, 2024
Abstract
Loading... -
METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMIIInsights into ImagingB. Kocak, T. Akinci D’Antonoli, N. Mercaldo, A. Alberich-Bayarri, B. Baessler, I. Ambrosini, A. E. Andreychenko, S. Bakas, R. G. H. Beets-Tan, K. Bressem, I. Buvat, R. Cannella, L. A. Cappellini, A. U. Cavallo, L. L. Chepelev, L. C. H. Chu, A. Demircioglu, N. M. Desouza, M. Dietzel, S. C. Fanni, A. Fedorov, L. S. Fournier, V. Giannini, R. Girometti, K. B. W. Groot Lipman, G. Kalarakis, B. S. Kelly, M. E. Klontzas, D. Koh, E. Kotter, H. Y. Lee, M. Maas, L. Marti-Bonmati, H. Müller, N. Obuchowski, F. Orlhac, N. Papanikolaou, E. Petrash, E. Pfaehler, D. Pinto Dos Santos, A. Ponsiglione, S. Sabater, F. Sardanelli, P. Seeböck, N. M. Sijtsema, A. Stanzione, A. Traverso, L. Ugga, M. Vallières, L. V. Van Dijk, J. J. M. Van Griethuysen, R. W. Van Hamersvelt, P. Van Ooijen, F. Vernuccio, A. Wang, S. Williams, J. Witowski, Z. Zhang, A. Zwanenburg, R. Cuocolo, 2024, 15;(1)
Abstract
Loading... -
An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre studynpj Precision OncologyL. Cai, D. M. J. Lambregts, G. L. Beets, M. Mass, E. H. P. Pooch, C. Guérendel, R. G. H. Beets-Tan, S. Benson, 2024, 8;(1)
Abstract
Loading... -
Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy?Journal of Cancer Research and Clinical OncologyM. Yeghaian, T. M. Tareco Bucho, M. De Bruin, A. Schmitz, Z. Bodalal, E. F. Smit, R. G. H. Beets-Tan, D. Van Den Broek, S. Trebeschi, 2024, 150;(6)
Abstract
Loading... -
Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysisEuropean RadiologyG. Agrotis, E. Pooch, M. Abdelatty, S. Benson, A. Vassiou, M. Vlychou, R. G. H. Beets-Tan, I. G. Schoots, 2024
Abstract
Loading...
2023
-
Synthesis of Contrast-Enhanced Breast MRI Using T1- and Multi-b-Value DWI-Based Hierarchical Fusion Network with Attention MechanismLecture Notes in Computer ScienceT. Zhang, L. Han, A. D’Angelo, X. Wang, Y. Gao, C. Lu, J. Teuwen, R. Beets-Tan, T. Tan, R. Mann, 2023
Abstract
Loading... -
Interpretability-guided Data Augmentation for Robust Segmentation in Multi-centre Colonoscopy DataV. Corbetta, R. Beets-Tan, W. Silva, 2023
Abstract
Loading... -
Attention-Based Regularisation for Improved Generalisability in Medical Multi-Centre Data2023 International Conference on Machine Learning and Applications (ICMLA)D. Silva, G. Agrotis, R. Beets-Tan, L. F. Teixeira, W. Silva, 2023
Abstract
Loading... -
How to 19F MRI: applications, technique, and getting startedBJR|OpenO. Maxouri, Z. Bodalal, M. Daal, S. Rostami, I. Rodriguez, L. Akkari, M. Srinivas, R. Bernards, R. Beets-Tan, 2023, 5;(1)
Abstract
Loading... -
RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast diseaseCell Reports MedicineT. Zhang, T. Tan, X. Wang, Y. Gao, L. Han, L. Balkenende, A. D’Angelo, L. Bao, H. M. Horlings, J. Teuwen, R. G. Beets-Tan, R. M. Mann, 2023
Abstract
Loading... -
Artificial Intelligence–based Quantification of Pleural Plaque Volume and Association With Lung Function in Asbestos-exposed PatientsJournal of Thoracic ImagingK. B. Groot Lipman, T. N. Boellaard, C. J. De Gooijer, N. Bogveradze, E. K. Hong, F. Landolfi, F. Castagnoli, N. Vakhidova, I. Smesseim, F. Van Der Heijden, R. G. Beets-Tan, R. Wittenberg, Z. Bodalal, J. A. Burgers, S. Trebeschi, 2023
Abstract
Loading... -
How Does Target Lesion Selection Affect RECIST? A Computer Simulation StudyInvestigative RadiologyT. M. Tareco Bucho, R. L. Tissier, K. B. Groot Lipman, Z. Bodalal, A. Delli Pizzi, T. D. L. Nguyen-Kim, R. G. Beets-Tan, S. Trebeschi, 2023
Abstract
Loading... -
Diagnostic accuracy of CT for local staging of colon cancer: A nationwide study in the NetherlandsEuropean Journal of CancerJ. Shkurti, K. Van Den Berg, F. N. Van Erning, M. J. Lahaye, R. G. Beets-Tan, J. Nederend, 2023, 193
Abstract
Loading... -
Predicting breast cancer types on and beyond molecular level in a multi-modal fashionnpj Breast CancerT. Zhang, T. Tan, L. Han, L. Appelman, J. Veltman, R. Wessels, K. M. Duvivier, C. Loo, Y. Gao, X. Wang, H. M. Horlings, R. G. H. Beets-Tan, R. M. Mann, 2023, 9;(1)
Abstract
Loading... -
Is the generalizability of a developed artificial intelligence algorithm for COVID-19 on chest CT sufficient for clinical use? Results from the International Consortium for COVID-19 Imaging AI (ICOVAI)European RadiologyL. Topff, K. B. W. Groot Lipman, F. Guffens, R. Wittenberg, A. Bartels-Rutten, G. Van Veenendaal, M. Hess, K. Lamerigts, J. Wakkie, E. Ranschaert, S. Trebeschi, J. J. Visser, R. G. H. Beets-Tan, J. Guiot, A. Snoeckx, P. Kint, L. Van Hoe, C. C. Quattrocchi, D. Dieckens, S. Lounis, E. Schulze, A. E. Sjer, N. Van Vucht, J. A. Tielbeek, F. Raat, D. Eijspaart, A. Abbas, 2023, 33;(6):4249-4258
Abstract
Loading... -
Radiomic signatures from T2W and DWI MRI are predictive of tumour hypoxia in colorectal liver metastasesInsights into ImagingZ. Bodalal, N. Bogveradze, L. C. Ter Beek, J. G. Van Den Berg, J. Sanders, I. Hofland, S. Trebeschi, K. B. W. Groot Lipman, K. Storck, E. K. Hong, N. Lebedyeva, M. Maas, R. G. H. Beets-Tan, F. M. Gomez, I. Kurilova, 2023, 14;(1)
Abstract
Loading... -
Independent validation of CT radiomics models in colorectal liver metastases: predicting local tumour progression after ablationEuropean RadiologyD. J. Van Der Reijd, C. Guerendel, F. C. R. Staal, M. P. Busard, M. De Oliveira Taveira, E. G. Klompenhouwer, K. F. D. Kuhlmann, A. Moelker, C. Verhoef, M. P. A. Starmans, D. M. J. Lambregts, R. G. H. Beets-Tan, S. Benson, M. Maas, 2023
Abstract
Loading... -
A Deep Learning Framework with Explainability for the Prediction of Lateral Locoregional Recurrences in Rectal Cancer Patients with Suspicious Lateral Lymph NodesDiagnosticsT. C. Sluckin, M. Hekhuis, S. Q. Kol, J. Nederend, K. Horsthuis, R. G. H. Beets-Tan, G. L. Beets, J. W. A. Burger, J. B. Tuynman, H. J. T. Rutten, M. Kusters, S. Benson, 2023, 13;(19):3099
Abstract
Loading... -
Sense and non-sense of imaging in the era of organ preservation for rectal cancerThe British Journal of RadiologyX. Ou, D. J. Van Der Reijd, D. M. Lambregts, B. A. Grotenhuis, B. Van Triest, G. L. Beets, R. G. Beets-Tan, M. Maas, 2023, 96;(1151)
Abstract
Loading... -
The diagnostic accuracy of local staging in colon cancer based on computed tomography (CT): evaluating the role of extramural venous invasion and tumour depositsAbdominal RadiologyK. Van Den Berg, S. Wang, J. M. W. E. Willems, G. J. Creemers, J. M. L. Roodhart, J. Shkurti, J. W. A. Burger, H. J. T. Rutten, R. G. H. Beets-Tan, J. Nederend, 2023, 49;(2):365-374
Abstract
Loading... -
Whole‐body MRI with diffusion‐weighted imaging as an adjunct to18F‐
fluorodeoxyglucose positron emission tomography andCT in patients with suspected recurrent colorectal cancerColorectal DiseaseJ. R. J. Willemse, M. J. Lahaye, N. F. M. Kok, B. A. Grotenhuis, A. G. J. Aalbers, G. L. Beets, C. Rijsemus, M. Maas, L. W. Van Golen, R. G. H. Beets‐Tan, D. M. J. Lambregts, 2023, 26;(2):290-299Abstract
Loading...
2022
-
Imaging of colorectal nodal diseaseThe Lymphatic System in Colorectal CancerL. Cai, Z. Bodalal, S. Trebeschi, S. Waktola, T. C. Sluckin, M. Kusters, M. Maas, R. Beets-Tan, S. Benson, 2022
Abstract
Loading... -
CNN-based tumor progression prediction after thermal ablation with CT imagingMedical Imaging 2022: Computer-Aided DiagnosisM. Taghavi, M. Maas, F. Staal, R. Beets-Tan, S. Benson, 2022
Abstract
Loading... -
Federated learning enables big data for rare cancer boundary detection.Nature communicationsS. Pati, U. Baid, B. Edwards, M. Sheller, S. Wang, G. A. Reina, P. Foley, A. Gruzdev, D. Karkada, C. Davatzikos, C. Sako, S. Ghodasara, M. Bilello, S. Mohan, P. Vollmuth, G. Brugnara, C. J. Preetha, F. Sahm, K. Maier-Hein, M. Zenk, M. Bendszus, W. Wick, E. Calabrese, J. Rudie, J. Villanueva-Meyer, S. Cha, M. Ingalhalikar, M. Jadhav, U. Pandey, J. Saini, J. Garrett, M. Larson, R. Jeraj, S. Currie, R. Frood, K. Fatania, R. Y. Huang, K. Chang, C. Balaña, J. Capellades, J. Puig, J. Trenkler, J. Pichler, G. Necker, A. Haunschmidt, S. Meckel, G. Shukla, S. Liem, G. S. Alexander, J. Lombardo, J. D. Palmer, A. E. Flanders, A. P. Dicker, H. I. Sair, C. K. Jones, A. Venkataraman, M. Jiang, T. Y. So, C. Chen, P. A. Heng, Q. Dou, M. Kozubek, F. Lux, J. Michálek, P. Matula, M. Keřkovský, T. Kopřivová, M. Dostál, V. Vybíhal, M. A. Vogelbaum, J. R. Mitchell, J. Farinhas, J. A. Maldjian, C. G. B. Yogananda, M. C. Pinho, D. Reddy, J. Holcomb, B. C. Wagner, B. M. Ellingson, T. F. Cloughesy, C. Raymond, T. Oughourlian, A. Hagiwara, C. Wang, M. To, S. Bhardwaj, C. Chong, M. Agzarian, A. X. Falcão, S. B. Martins, B. C. A. Teixeira, F. Sprenger, D. Menotti, D. R. Lucio, P. Lamontagne, D. Marcus, B. Wiestler, F. Kofler, I. Ezhov, M. Metz, R. Jain, M. Lee, Y. W. Lui, R. Mckinley, J. Slotboom, P. Radojewski, R. Meier, R. Wiest, D. Murcia, E. Fu, R. Haas, J. Thompson, D. R. Ormond, C. Badve, A. E. Sloan, V. Vadmal, K. Waite, R. R. Colen, L. Pei, M. Ak, A. Srinivasan, J. R. Bapuraj, A. Rao, N. Wang, O. Yoshiaki, T. Moritani, S. Turk, J. Lee, S. Prabhudesai, F. Morón, J. Mandel, K. Kamnitsas, B. Glocker, L. V. M. Dixon, M. Williams, P. Zampakis, V. Panagiotopoulos, P. Tsiganos, S. Alexiou, I. Haliassos, E. I. Zacharaki, K. Moustakas, C. Kalogeropoulou, D. M. Kardamakis, Y. S. Choi, S. Lee, J. H. Chang, S. S. Ahn, B. Luo, L. Poisson, N. Wen, P. Tiwari, R. Verma, R. Bareja, I. Yadav, J. Chen, N. Kumar, M. Smits, S. R. Van Der Voort, A. Alafandi, F. Incekara, M. M. J. Wijnenga, G. Kapsas, R. Gahrmann, J. W. Schouten, H. J. Dubbink, A. J. P. E. Vincent, M. J. Van Den Bent, P. J. French, S. Klein, Y. Yuan, S. Sharma, T. Tseng, S. Adabi, S. P. Niclou, O. Keunen, A. Hau, M. Vallières, D. Fortin, M. Lepage, B. Landman, K. Ramadass, K. Xu, S. Chotai, L. B. Chambless, A. Mistry, R. C. Thompson, Y. Gusev, K. Bhuvaneshwar, A. Sayah, C. Bencheqroun, A. Belouali, S. Madhavan, T. C. Booth, A. Chelliah, M. Modat, H. Shuaib, C. Dragos, A. Abayazeed, K. Kolodziej, M. Hill, A. Abbassy, S. Gamal, M. Mekhaimar, M. Qayati, M. Reyes, J. E. Park, J. Yun, H. S. Kim, A. Mahajan, M. Muzi, S. Benson, R. G. H. Beets-Tan, J. Teuwen, A. Herrera-Trujillo, M. Trujillo, W. Escobar, A. Abello, J. Bernal, J. Gómez, J. Choi, S. Baek, Y. Kim, H. Ismael, B. Allen, J. M. Buatti, A. Kotrotsou, H. Li, T. Weiss, M. Weller, A. Bink, B. Pouymayou, H. F. Shaykh, J. Saltz, P. Prasanna, S. Shrestha, K. M. Mani, D. Payne, T. Kurc, E. Pelaez, H. Franco-Maldonado, F. Loayza, S. Quevedo, P. Guevara, E. Torche, C. Mendoza, F. Vera, E. Ríos, E. López, S. A. Velastin, G. Ogbole, M. Soneye, D. Oyekunle, O. Odafe-Oyibotha, B. Osobu, M. Shu'Aibu, A. Dorcas, F. Dako, A. L. Simpson, M. Hamghalam, J. J. Peoples, R. Hu, A. Tran, D. Cutler, F. Y. Moraes, M. A. Boss, J. Gimpel, D. K. Veettil, K. Schmidt, B. Bialecki, S. Marella, C. Price, L. Cimino, C. Apgar, P. Shah, B. Menze, J. S. Barnholtz-Sloan, J. Martin, S. Bakas, 2022, 13;(1):7346
Abstract
Loading... -
Artificial intelligence-based diagnosis of asbestosis: analysis of a database with applicants for asbestosis state aidEuropean RadiologyK. B. W. Groot Lipman, C. J. De Gooijer, T. N. Boellaard, F. Van Der Heijden, R. G. H. Beets-Tan, Z. Bodalal, S. Trebeschi, J. A. Burgers, 2022, 33;(5):3557-3565
Abstract
Loading... -
The Future of Artificial Intelligence Applied to Immunotherapy TrialsNeoadjuvant Immunotherapy Treatment of Localized Genitourinary CancersZ. Bodalal, S. Trebeschi, I. Wamelink, K. G. Lipman, T. Bucho, N. Van Dijk, T. Boellaard, S. Waktola, R. G. H. Beets-Tan, 2022
Abstract
Loading...
2021
-
An improved automatic system for aiding the detection of colon polyps using deep learning2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)L. Cai, R. Beets-Tan, S. Benson, 2021
Abstract
Loading... -
Artificial intelligence-mediated diagnosis of asbestosisILD / DPLD of known originK. B. W. G. Lipman, C. J. De Gooijer, T. N. Boellaard, F. Van Der Heijden, R. G. H. Beets-Tan, Z. Bodalal, S. Trebeschi, S. Burgers, 2021
Abstract
Loading... -
Pleural plaque volume correlation to lung function and artificial intelligence-driven pleural plaque quantificationILD / DPLD of known originK. B. W. G. Lipman, T. N. Boellaard, C. J. De Gooijer, N. Bogveradze, E. K. Hong, F. Landolfi, F. Castagnoli, L. C. Cavallo, N. Lebedyeva, F. Van Der Heijden, R. G. H. Beets-Tan, Z. Bodalal, S. Burgers, S. Trebeschi, 2021
Abstract
Loading... -
Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving ImmunotherapyFrontiers in OncologyS. Trebeschi, Z. Bodalal, T. N. Boellaard, T. M. Tareco Bucho, S. G. Drago, I. Kurilova, A. M. Calin-Vainak, A. Delli Pizzi, M. Muller, K. Hummelink, K. J. Hartemink, T. D. L. Nguyen-Kim, E. F. Smit, H. J. W. L. Aerts, R. G. H. Beets-Tan, 2021, 11
Abstract
Loading... -
Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving ImmunotherapyFrontiers in OncologyS. Trebeschi, Z. Bodalal, N. Van Dijk, T. N. Boellaard, P. Apfaltrer, T. M. Tareco Bucho, T. D. L. Nguyen-Kim, M. S. Van Der Heijden, H. J. W. L. Aerts, R. G. H. Beets-Tan, 2021, 11
Abstract
Loading... -
The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiationSurgical EndoscopyH. E. Haak, X. Gao, M. Maas, S. Waktola, S. Benson, R. G. H. Beets-Tan, G. L. Beets, M. Van Leerdam, J. Melenhorst, 2021, 36;(5):3592-3600
Abstract
Loading...