Publications

Sean Benson

2024

  1. An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study
    npj Precision Oncology
    L. Cai, D. M. J. Lambregts, G. L. Beets, M. Mass, E. H. P. Pooch, C. Guérendel, R. G. H. Beets-Tan, S. Benson, 2024, 8;(1)
    Abstract
    Loading...
  2. Multi-sequence MRI radiomics of colorectal liver metastases: Which features are reproducible across readers?
    European Journal of Radiology
    D. J. Van Der Reijd, K. Chupetlovska, E. Van Dijk, B. Westerink, M. A. Monraats, J. J. Van Griethuysen, D. M. Lambregts, R. Tissier, R. G. Beets-Tan, S. Benson, M. Maas, 2024, 172
    Abstract
    Loading...
  3. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysis
    European Radiology
    G. Agrotis, E. Pooch, M. Abdelatty, S. Benson, A. Vassiou, M. Vlychou, R. G. H. Beets-Tan, I. G. Schoots, 2024
    Abstract
    Loading...
  4. Improving Rectal Tumor Segmentation with Anomaly Fusion Derived from Anatomical Inpainting: A Multicenter Study
    L. Cai, M. A. Abdelatty, L. Han, D. Lambregts, J. Van Griethuysen, E. Pooch, R. G. Beets-Tan, S. Benson, J. Brunekreef, J. Teuwen, 2024
    Abstract
    Loading...

2023

  1. Independent validation of CT radiomics models in colorectal liver metastases: predicting local tumour progression after ablation
    European Radiology
    D. J. Van Der Reijd, C. Guerendel, F. C. R. Staal, M. P. Busard, M. De Oliveira Taveira, E. G. Klompenhouwer, K. F. D. Kuhlmann, A. Moelker, C. Verhoef, M. P. A. Starmans, D. M. J. Lambregts, R. G. H. Beets-Tan, S. Benson, M. Maas, 2023
    Abstract
    Loading...
  2. A Deep Learning Framework with Explainability for the Prediction of Lateral Locoregional Recurrences in Rectal Cancer Patients with Suspicious Lateral Lymph Nodes
    Diagnostics
    T. C. Sluckin, M. Hekhuis, S. Q. Kol, J. Nederend, K. Horsthuis, R. G. H. Beets-Tan, G. L. Beets, J. W. A. Burger, J. B. Tuynman, H. J. T. Rutten, M. Kusters, S. Benson, 2023, 13;(19):3099
    Abstract
    Loading...
  3. CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    CardioVascular and Interventional Radiology
    A. Najafi, R. L. Cazzato, B. C. Meyer, P. L. Pereira, A. Alberich, A. López, M. Ronot, J. Fritz, M. Maas, S. Benson, P. Haage, F. Gomez Munoz, 2023, 46;(10):1303-1307
    Abstract
    Loading...

2022

  1. Breast imaging and deep learning: past, present, and future
    Advances in Magnetic Resonance Technology and Applications
    S. Eskreis-Winkler, J. Teuwen, S. Benson, 2022
    Abstract
    Loading...
  2. Federated learning enables big data for rare cancer boundary detection.
    Nature communications
    S. Pati, U. Baid, B. Edwards, M. Sheller, S. Wang, G. A. Reina, P. Foley, A. Gruzdev, D. Karkada, C. Davatzikos, C. Sako, S. Ghodasara, M. Bilello, S. Mohan, P. Vollmuth, G. Brugnara, C. J. Preetha, F. Sahm, K. Maier-Hein, M. Zenk, M. Bendszus, W. Wick, E. Calabrese, J. Rudie, J. Villanueva-Meyer, S. Cha, M. Ingalhalikar, M. Jadhav, U. Pandey, J. Saini, J. Garrett, M. Larson, R. Jeraj, S. Currie, R. Frood, K. Fatania, R. Y. Huang, K. Chang, C. Balaña, J. Capellades, J. Puig, J. Trenkler, J. Pichler, G. Necker, A. Haunschmidt, S. Meckel, G. Shukla, S. Liem, G. S. Alexander, J. Lombardo, J. D. Palmer, A. E. Flanders, A. P. Dicker, H. I. Sair, C. K. Jones, A. Venkataraman, M. Jiang, T. Y. So, C. Chen, P. A. Heng, Q. Dou, M. Kozubek, F. Lux, J. Michálek, P. Matula, M. Keřkovský, T. Kopřivová, M. Dostál, V. Vybíhal, M. A. Vogelbaum, J. R. Mitchell, J. Farinhas, J. A. Maldjian, C. G. B. Yogananda, M. C. Pinho, D. Reddy, J. Holcomb, B. C. Wagner, B. M. Ellingson, T. F. Cloughesy, C. Raymond, T. Oughourlian, A. Hagiwara, C. Wang, M. To, S. Bhardwaj, C. Chong, M. Agzarian, A. X. Falcão, S. B. Martins, B. C. A. Teixeira, F. Sprenger, D. Menotti, D. R. Lucio, P. Lamontagne, D. Marcus, B. Wiestler, F. Kofler, I. Ezhov, M. Metz, R. Jain, M. Lee, Y. W. Lui, R. Mckinley, J. Slotboom, P. Radojewski, R. Meier, R. Wiest, D. Murcia, E. Fu, R. Haas, J. Thompson, D. R. Ormond, C. Badve, A. E. Sloan, V. Vadmal, K. Waite, R. R. Colen, L. Pei, M. Ak, A. Srinivasan, J. R. Bapuraj, A. Rao, N. Wang, O. Yoshiaki, T. Moritani, S. Turk, J. Lee, S. Prabhudesai, F. Morón, J. Mandel, K. Kamnitsas, B. Glocker, L. V. M. Dixon, M. Williams, P. Zampakis, V. Panagiotopoulos, P. Tsiganos, S. Alexiou, I. Haliassos, E. I. Zacharaki, K. Moustakas, C. Kalogeropoulou, D. M. Kardamakis, Y. S. Choi, S. Lee, J. H. Chang, S. S. Ahn, B. Luo, L. Poisson, N. Wen, P. Tiwari, R. Verma, R. Bareja, I. Yadav, J. Chen, N. Kumar, M. Smits, S. R. Van Der Voort, A. Alafandi, F. Incekara, M. M. J. Wijnenga, G. Kapsas, R. Gahrmann, J. W. Schouten, H. J. Dubbink, A. J. P. E. Vincent, M. J. Van Den Bent, P. J. French, S. Klein, Y. Yuan, S. Sharma, T. Tseng, S. Adabi, S. P. Niclou, O. Keunen, A. Hau, M. Vallières, D. Fortin, M. Lepage, B. Landman, K. Ramadass, K. Xu, S. Chotai, L. B. Chambless, A. Mistry, R. C. Thompson, Y. Gusev, K. Bhuvaneshwar, A. Sayah, C. Bencheqroun, A. Belouali, S. Madhavan, T. C. Booth, A. Chelliah, M. Modat, H. Shuaib, C. Dragos, A. Abayazeed, K. Kolodziej, M. Hill, A. Abbassy, S. Gamal, M. Mekhaimar, M. Qayati, M. Reyes, J. E. Park, J. Yun, H. S. Kim, A. Mahajan, M. Muzi, S. Benson, R. G. H. Beets-Tan, J. Teuwen, A. Herrera-Trujillo, M. Trujillo, W. Escobar, A. Abello, J. Bernal, J. Gómez, J. Choi, S. Baek, Y. Kim, H. Ismael, B. Allen, J. M. Buatti, A. Kotrotsou, H. Li, T. Weiss, M. Weller, A. Bink, B. Pouymayou, H. F. Shaykh, J. Saltz, P. Prasanna, S. Shrestha, K. M. Mani, D. Payne, T. Kurc, E. Pelaez, H. Franco-Maldonado, F. Loayza, S. Quevedo, P. Guevara, E. Torche, C. Mendoza, F. Vera, E. Ríos, E. López, S. A. Velastin, G. Ogbole, M. Soneye, D. Oyekunle, O. Odafe-Oyibotha, B. Osobu, M. Shu'Aibu, A. Dorcas, F. Dako, A. L. Simpson, M. Hamghalam, J. J. Peoples, R. Hu, A. Tran, D. Cutler, F. Y. Moraes, M. A. Boss, J. Gimpel, D. K. Veettil, K. Schmidt, B. Bialecki, S. Marella, C. Price, L. Cimino, C. Apgar, P. Shah, B. Menze, J. S. Barnholtz-Sloan, J. Martin, S. Bakas, 2022, 13;(1):7346
    Abstract
    Loading...
  3. Imaging of colorectal nodal disease
    The Lymphatic System in Colorectal Cancer
    L. Cai, Z. Bodalal, S. Trebeschi, S. Waktola, T. C. Sluckin, M. Kusters, M. Maas, R. Beets-Tan, S. Benson, 2022
    Abstract
    Loading...
  4. CNN-based tumor progression prediction after thermal ablation with CT imaging
    Medical Imaging 2022: Computer-Aided Diagnosis
    M. Taghavi, M. Maas, F. Staal, R. Beets-Tan, S. Benson, 2022
    Abstract
    Loading...

2021

  1. An improved automatic system for aiding the detection of colon polyps using deep learning
    2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)
    L. Cai, R. Beets-Tan, S. Benson, 2021
    Abstract
    Loading...
  2. The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation
    Surgical Endoscopy
    H. E. Haak, X. Gao, M. Maas, S. Waktola, S. Benson, R. G. H. Beets-Tan, G. L. Beets, M. Van Leerdam, J. Melenhorst, 2021, 36;(5):3592-3600
    Abstract
    Loading...