Publications

2024

  1. IMPORTANT-Net: Integrated MRI multi-parametric increment fusion generator with attention network for synthesizing absent data
    Information Fusion
    T. Zhang, T. Tan, L. Han, X. Wang, Y. Gao, J. Van Dijk, A. Portaluri, A. Gonzalez-Huete, A. D’Angelo, C. Lu, J. Teuwen, R. Beets-Tan, Y. Sun, R. Mann, 2024, 108
    Abstract
    Loading...
  2. Enhancing Cross-Modal Medical Image Segmentation through Compositionality
    A. Eijpe, V. Corbetta, K. Chupetlovska, R. Beets-Tan, W. Silva, 2024
    Abstract
    Loading...
  3. FedGS: Federated Gradient Scaling for Heterogeneous Medical Image Segmentation
    P. Schutte, V. Corbetta, R. Beets-Tan, W. Silva, 2024
    Abstract
    Loading...
  4. Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms
    Lecture Notes in Computer Science
    X. Wang, T. Tan, Y. Gao, E. Marcus, L. Han, A. Portaluri, T. Zhang, C. Lu, X. Liang, R. Beets-Tan, J. Teuwen, R. Mann, 2024
    Abstract
    Loading...
  5. Improving Neoadjuvant Therapy Response Prediction by Integrating Longitudinal Mammogram Generation with Cross-Modal Radiological Reports: A Vision-Language Alignment-Guided Model
    Lecture Notes in Computer Science
    Y. Gao, H. Zhou, X. Wang, T. Zhang, L. Han, C. Lu, X. Liang, J. Teuwen, R. Beets-Tan, T. Tan, R. Mann, 2024
    Abstract
    Loading...
  6. Overcoming data scarcity in radiomics/radiogenomics using synthetic radiomic features
    Computers in Biology and Medicine
    M. Ahmadian, Z. Bodalal, H. J. Van Der Hulst, C. Vens, L. Karssemakers, N. Bogveradze, F. Castagnoli, F. Landolfi, E. K. Hong, N. Gennaro, A. D. Pizzi, R. G. Beets-Tan, M. W. Van Den Brekel, J. A. Castelijns, 2024
    Abstract
    Loading...
  7. Reproducing RECIST lesion selection via machine learning: Insights into intra and inter-radiologist variation
    European Journal of Radiology Open
    T. M. Tareco Bucho, L. Petrychenko, M. A. Abdelatty, N. Bogveradze, Z. Bodalal, R. G. Beets-Tan, S. Trebeschi, 2024, 12
    Abstract
    Loading...
  8. Multi-sequence MRI radiomics of colorectal liver metastases: Which features are reproducible across readers?
    European Journal of Radiology
    D. J. Van Der Reijd, K. Chupetlovska, E. Van Dijk, B. Westerink, M. A. Monraats, J. J. Van Griethuysen, D. M. Lambregts, R. Tissier, R. G. Beets-Tan, S. Benson, M. Maas, 2024, 172
    Abstract
    Loading...
  9. Improving Rectal Tumor Segmentation with Anomaly Fusion Derived from Anatomical Inpainting: A Multicenter Study
    L. Cai, M. A. Abdelatty, L. Han, D. Lambregts, J. Van Griethuysen, E. Pooch, R. G. Beets-Tan, S. Benson, J. Brunekreef, J. Teuwen, 2024
    Abstract
    Loading...
  10. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII
    Insights into Imaging
    B. Kocak, T. Akinci D’Antonoli, N. Mercaldo, A. Alberich-Bayarri, B. Baessler, I. Ambrosini, A. E. Andreychenko, S. Bakas, R. G. H. Beets-Tan, K. Bressem, I. Buvat, R. Cannella, L. A. Cappellini, A. U. Cavallo, L. L. Chepelev, L. C. H. Chu, A. Demircioglu, N. M. Desouza, M. Dietzel, S. C. Fanni, A. Fedorov, L. S. Fournier, V. Giannini, R. Girometti, K. B. W. Groot Lipman, G. Kalarakis, B. S. Kelly, M. E. Klontzas, D. Koh, E. Kotter, H. Y. Lee, M. Maas, L. Marti-Bonmati, H. Müller, N. Obuchowski, F. Orlhac, N. Papanikolaou, E. Petrash, E. Pfaehler, D. Pinto Dos Santos, A. Ponsiglione, S. Sabater, F. Sardanelli, P. Seeböck, N. M. Sijtsema, A. Stanzione, A. Traverso, L. Ugga, M. Vallières, L. V. Van Dijk, J. J. M. Van Griethuysen, R. W. Van Hamersvelt, P. Van Ooijen, F. Vernuccio, A. Wang, S. Williams, J. Witowski, Z. Zhang, A. Zwanenburg, R. Cuocolo, 2024, 15;(1)
    Abstract
    Loading...
  11. An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study
    npj Precision Oncology
    L. Cai, D. M. J. Lambregts, G. L. Beets, M. Mass, E. H. P. Pooch, C. Guérendel, R. G. H. Beets-Tan, S. Benson, 2024, 8;(1)
    Abstract
    Loading...
  12. Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy?
    Journal of Cancer Research and Clinical Oncology
    M. Yeghaian, T. M. Tareco Bucho, M. De Bruin, A. Schmitz, Z. Bodalal, E. F. Smit, R. G. H. Beets-Tan, D. Van Den Broek, S. Trebeschi, 2024, 150;(6)
    Abstract
    Loading...
  13. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: A systematic review and meta-analysis
    European Radiology
    G. Agrotis, E. Pooch, M. Abdelatty, S. Benson, A. Vassiou, M. Vlychou, R. G. H. Beets-Tan, I. G. Schoots, 2024
    Abstract
    Loading...
  14. Multi-task Learning Approach for Intracranial Hemorrhage Prognosis
    M. Cobo, A. P. Del Barrio, P. M. Fernández-Miranda, P. S. Bellón, L. L. Iglesias, W. Silva, 2024
    Abstract
    Loading...
  15. To deform or not: treatment-aware longitudinal registration for breast DCE-MRI during neoadjuvant chemotherapy via unsupervised keypoints detection
    L. Han, T. Tan, T. Zhang, Y. Gao, X. Wang, V. Longo, S. Ventura-Díaz, A. D'Angelo, J. Teuwen, R. Mann, 2024
    Abstract
    Loading...
  16. AI Applications to Breast MRI: Today and Tomorrow.
    Journal of magnetic resonance imaging: JMRI
    R. Lo Gullo, J. Brunekreef, E. Marcus, L. K. Han, S. Eskreis-Winkler, S. B. Thakur, R. Mann, K. Groot Lipman, J. Teuwen, K. Pinker, 2024
    Abstract
    Loading...
  17. Large retrorectal spindle cell sarcoma: A case report and brief review of the literature
    Radiology Case Reports
    C. L. Petersen, M. R. Byriel, J. Shkurti, S. R. Rafaelsen, 2024, 19;(7):2684-2688
    Abstract
    Loading...

2023

  1. Predicting up to 10 year breast cancer risk using longitudinal mammographic screening history
    X. Wang, T. Tan, Y. Gao, R. Su, T. Zhang, L. Han, J. Teuwen, A. D’Angelo, C. A. Drukker, M. K. Schmidt, R. Beets-Tan, N. Karssemeijer, R. Mann, 2023
    Abstract
    Loading...
  2. Synthesis of Contrast-Enhanced Breast MRI Using T1- and Multi-b-Value DWI-Based Hierarchical Fusion Network with Attention Mechanism
    Lecture Notes in Computer Science
    T. Zhang, L. Han, A. D’Angelo, X. Wang, Y. Gao, C. Lu, J. Teuwen, R. Beets-Tan, T. Tan, R. Mann, 2023
    Abstract
    Loading...
  3. Interpretability-guided Data Augmentation for Robust Segmentation in Multi-centre Colonoscopy Data
    V. Corbetta, R. Beets-Tan, W. Silva, 2023
    Abstract
    Loading...
  4. Attention-Based Regularisation for Improved Generalisability in Medical Multi-Centre Data
    2023 International Conference on Machine Learning and Applications (ICMLA)
    D. Silva, G. Agrotis, R. Beets-Tan, L. F. Teixeira, W. Silva, 2023
    Abstract
    Loading...
  5. How to 19F MRI: applications, technique, and getting started
    BJR|Open
    O. Maxouri, Z. Bodalal, M. Daal, S. Rostami, I. Rodriguez, L. Akkari, M. Srinivas, R. Bernards, R. Beets-Tan, 2023, 5;(1)
    Abstract
    Loading...
  6. RadioLOGIC, a healthcare model for processing electronic health records and decision-making in breast disease
    Cell Reports Medicine
    T. Zhang, T. Tan, X. Wang, Y. Gao, L. Han, L. Balkenende, A. D’Angelo, L. Bao, H. M. Horlings, J. Teuwen, R. G. Beets-Tan, R. M. Mann, 2023
    Abstract
    Loading...
  7. Artificial Intelligence–based Quantification of Pleural Plaque Volume and Association With Lung Function in Asbestos-exposed Patients
    Journal of Thoracic Imaging
    K. B. Groot Lipman, T. N. Boellaard, C. J. De Gooijer, N. Bogveradze, E. K. Hong, F. Landolfi, F. Castagnoli, N. Vakhidova, I. Smesseim, F. Van Der Heijden, R. G. Beets-Tan, R. Wittenberg, Z. Bodalal, J. A. Burgers, S. Trebeschi, 2023
    Abstract
    Loading...
  8. How Does Target Lesion Selection Affect RECIST? A Computer Simulation Study
    Investigative Radiology
    T. M. Tareco Bucho, R. L. Tissier, K. B. Groot Lipman, Z. Bodalal, A. Delli Pizzi, T. D. L. Nguyen-Kim, R. G. Beets-Tan, S. Trebeschi, 2023
    Abstract
    Loading...
  9. Diagnostic accuracy of CT for local staging of colon cancer: A nationwide study in the Netherlands
    European Journal of Cancer
    J. Shkurti, K. Van Den Berg, F. N. Van Erning, M. J. Lahaye, R. G. Beets-Tan, J. Nederend, 2023, 193
    Abstract
    Loading...
  10. Predicting breast cancer types on and beyond molecular level in a multi-modal fashion
    npj Breast Cancer
    T. Zhang, T. Tan, L. Han, L. Appelman, J. Veltman, R. Wessels, K. M. Duvivier, C. Loo, Y. Gao, X. Wang, H. M. Horlings, R. G. H. Beets-Tan, R. M. Mann, 2023, 9;(1)
    Abstract
    Loading...
  11. Is the generalizability of a developed artificial intelligence algorithm for COVID-19 on chest CT sufficient for clinical use? Results from the International Consortium for COVID-19 Imaging AI (ICOVAI)
    European Radiology
    L. Topff, K. B. W. Groot Lipman, F. Guffens, R. Wittenberg, A. Bartels-Rutten, G. Van Veenendaal, M. Hess, K. Lamerigts, J. Wakkie, E. Ranschaert, S. Trebeschi, J. J. Visser, R. G. H. Beets-Tan, J. Guiot, A. Snoeckx, P. Kint, L. Van Hoe, C. C. Quattrocchi, D. Dieckens, S. Lounis, E. Schulze, A. E. Sjer, N. Van Vucht, J. A. Tielbeek, F. Raat, D. Eijspaart, A. Abbas, 2023, 33;(6):4249-4258
    Abstract
    Loading...
  12. Radiomic signatures from T2W and DWI MRI are predictive of tumour hypoxia in colorectal liver metastases
    Insights into Imaging
    Z. Bodalal, N. Bogveradze, L. C. Ter Beek, J. G. Van Den Berg, J. Sanders, I. Hofland, S. Trebeschi, K. B. W. Groot Lipman, K. Storck, E. K. Hong, N. Lebedyeva, M. Maas, R. G. H. Beets-Tan, F. M. Gomez, I. Kurilova, 2023, 14;(1)
    Abstract
    Loading...
  13. Independent validation of CT radiomics models in colorectal liver metastases: predicting local tumour progression after ablation
    European Radiology
    D. J. Van Der Reijd, C. Guerendel, F. C. R. Staal, M. P. Busard, M. De Oliveira Taveira, E. G. Klompenhouwer, K. F. D. Kuhlmann, A. Moelker, C. Verhoef, M. P. A. Starmans, D. M. J. Lambregts, R. G. H. Beets-Tan, S. Benson, M. Maas, 2023
    Abstract
    Loading...
  14. A Deep Learning Framework with Explainability for the Prediction of Lateral Locoregional Recurrences in Rectal Cancer Patients with Suspicious Lateral Lymph Nodes
    Diagnostics
    T. C. Sluckin, M. Hekhuis, S. Q. Kol, J. Nederend, K. Horsthuis, R. G. H. Beets-Tan, G. L. Beets, J. W. A. Burger, J. B. Tuynman, H. J. T. Rutten, M. Kusters, S. Benson, 2023, 13;(19):3099
    Abstract
    Loading...
  15. Sense and non-sense of imaging in the era of organ preservation for rectal cancer
    The British Journal of Radiology
    X. Ou, D. J. Van Der Reijd, D. M. Lambregts, B. A. Grotenhuis, B. Van Triest, G. L. Beets, R. G. Beets-Tan, M. Maas, 2023, 96;(1151)
    Abstract
    Loading...
  16. The diagnostic accuracy of local staging in colon cancer based on computed tomography (CT): evaluating the role of extramural venous invasion and tumour deposits
    Abdominal Radiology
    K. Van Den Berg, S. Wang, J. M. W. E. Willems, G. J. Creemers, J. M. L. Roodhart, J. Shkurti, J. W. A. Burger, H. J. T. Rutten, R. G. H. Beets-Tan, J. Nederend, 2023, 49;(2):365-374
    Abstract
    Loading...
  17. Whole‐body MRI with diffusion‐weighted imaging as an adjunct to18F‐fluorodeoxyglucose positron emission tomography and CT in patients with suspected recurrent colorectal cancer
    Colorectal Disease
    J. R. J. Willemse, M. J. Lahaye, N. F. M. Kok, B. A. Grotenhuis, A. G. J. Aalbers, G. L. Beets, C. Rijsemus, M. Maas, L. W. Van Golen, R. G. H. Beets‐Tan, D. M. J. Lambregts, 2023, 26;(2):290-299
    Abstract
    Loading...
  18. CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    CardioVascular and Interventional Radiology
    A. Najafi, R. L. Cazzato, B. C. Meyer, P. L. Pereira, A. Alberich, A. López, M. Ronot, J. Fritz, M. Maas, S. Benson, P. Haage, F. Gomez Munoz, 2023, 46;(10):1303-1307
    Abstract
    Loading...
  19. Visualize what you learn: a well-explainable joint-learning framework based on multi-view mammograms and associated reports
    Y. Gao, H. Zhou, X. Wang, T. Zhang, R. Tan, L. Han, L. Estacio, A. D’Angelo, J. Teuwen, R. Mann, T. Tan, 2023
    Abstract
    Loading...
  20. Synthesis-based imaging-differentiation representation learning for multi-sequence 3D/4D MRI
    Medical Image Analysis
    L. Han, T. Tan, T. Zhang, Y. Huang, X. Wang, Y. Gao, J. Teuwen, R. Mann, 2023
    Abstract
    Loading...

2022

  1. Imaging of colorectal nodal disease
    The Lymphatic System in Colorectal Cancer
    L. Cai, Z. Bodalal, S. Trebeschi, S. Waktola, T. C. Sluckin, M. Kusters, M. Maas, R. Beets-Tan, S. Benson, 2022
    Abstract
    Loading...
  2. CNN-based tumor progression prediction after thermal ablation with CT imaging
    Medical Imaging 2022: Computer-Aided Diagnosis
    M. Taghavi, M. Maas, F. Staal, R. Beets-Tan, S. Benson, 2022
    Abstract
    Loading...
  3. Federated learning enables big data for rare cancer boundary detection.
    Nature communications
    S. Pati, U. Baid, B. Edwards, M. Sheller, S. Wang, G. A. Reina, P. Foley, A. Gruzdev, D. Karkada, C. Davatzikos, C. Sako, S. Ghodasara, M. Bilello, S. Mohan, P. Vollmuth, G. Brugnara, C. J. Preetha, F. Sahm, K. Maier-Hein, M. Zenk, M. Bendszus, W. Wick, E. Calabrese, J. Rudie, J. Villanueva-Meyer, S. Cha, M. Ingalhalikar, M. Jadhav, U. Pandey, J. Saini, J. Garrett, M. Larson, R. Jeraj, S. Currie, R. Frood, K. Fatania, R. Y. Huang, K. Chang, C. Balaña, J. Capellades, J. Puig, J. Trenkler, J. Pichler, G. Necker, A. Haunschmidt, S. Meckel, G. Shukla, S. Liem, G. S. Alexander, J. Lombardo, J. D. Palmer, A. E. Flanders, A. P. Dicker, H. I. Sair, C. K. Jones, A. Venkataraman, M. Jiang, T. Y. So, C. Chen, P. A. Heng, Q. Dou, M. Kozubek, F. Lux, J. Michálek, P. Matula, M. Keřkovský, T. Kopřivová, M. Dostál, V. Vybíhal, M. A. Vogelbaum, J. R. Mitchell, J. Farinhas, J. A. Maldjian, C. G. B. Yogananda, M. C. Pinho, D. Reddy, J. Holcomb, B. C. Wagner, B. M. Ellingson, T. F. Cloughesy, C. Raymond, T. Oughourlian, A. Hagiwara, C. Wang, M. To, S. Bhardwaj, C. Chong, M. Agzarian, A. X. Falcão, S. B. Martins, B. C. A. Teixeira, F. Sprenger, D. Menotti, D. R. Lucio, P. Lamontagne, D. Marcus, B. Wiestler, F. Kofler, I. Ezhov, M. Metz, R. Jain, M. Lee, Y. W. Lui, R. Mckinley, J. Slotboom, P. Radojewski, R. Meier, R. Wiest, D. Murcia, E. Fu, R. Haas, J. Thompson, D. R. Ormond, C. Badve, A. E. Sloan, V. Vadmal, K. Waite, R. R. Colen, L. Pei, M. Ak, A. Srinivasan, J. R. Bapuraj, A. Rao, N. Wang, O. Yoshiaki, T. Moritani, S. Turk, J. Lee, S. Prabhudesai, F. Morón, J. Mandel, K. Kamnitsas, B. Glocker, L. V. M. Dixon, M. Williams, P. Zampakis, V. Panagiotopoulos, P. Tsiganos, S. Alexiou, I. Haliassos, E. I. Zacharaki, K. Moustakas, C. Kalogeropoulou, D. M. Kardamakis, Y. S. Choi, S. Lee, J. H. Chang, S. S. Ahn, B. Luo, L. Poisson, N. Wen, P. Tiwari, R. Verma, R. Bareja, I. Yadav, J. Chen, N. Kumar, M. Smits, S. R. Van Der Voort, A. Alafandi, F. Incekara, M. M. J. Wijnenga, G. Kapsas, R. Gahrmann, J. W. Schouten, H. J. Dubbink, A. J. P. E. Vincent, M. J. Van Den Bent, P. J. French, S. Klein, Y. Yuan, S. Sharma, T. Tseng, S. Adabi, S. P. Niclou, O. Keunen, A. Hau, M. Vallières, D. Fortin, M. Lepage, B. Landman, K. Ramadass, K. Xu, S. Chotai, L. B. Chambless, A. Mistry, R. C. Thompson, Y. Gusev, K. Bhuvaneshwar, A. Sayah, C. Bencheqroun, A. Belouali, S. Madhavan, T. C. Booth, A. Chelliah, M. Modat, H. Shuaib, C. Dragos, A. Abayazeed, K. Kolodziej, M. Hill, A. Abbassy, S. Gamal, M. Mekhaimar, M. Qayati, M. Reyes, J. E. Park, J. Yun, H. S. Kim, A. Mahajan, M. Muzi, S. Benson, R. G. H. Beets-Tan, J. Teuwen, A. Herrera-Trujillo, M. Trujillo, W. Escobar, A. Abello, J. Bernal, J. Gómez, J. Choi, S. Baek, Y. Kim, H. Ismael, B. Allen, J. M. Buatti, A. Kotrotsou, H. Li, T. Weiss, M. Weller, A. Bink, B. Pouymayou, H. F. Shaykh, J. Saltz, P. Prasanna, S. Shrestha, K. M. Mani, D. Payne, T. Kurc, E. Pelaez, H. Franco-Maldonado, F. Loayza, S. Quevedo, P. Guevara, E. Torche, C. Mendoza, F. Vera, E. Ríos, E. López, S. A. Velastin, G. Ogbole, M. Soneye, D. Oyekunle, O. Odafe-Oyibotha, B. Osobu, M. Shu'Aibu, A. Dorcas, F. Dako, A. L. Simpson, M. Hamghalam, J. J. Peoples, R. Hu, A. Tran, D. Cutler, F. Y. Moraes, M. A. Boss, J. Gimpel, D. K. Veettil, K. Schmidt, B. Bialecki, S. Marella, C. Price, L. Cimino, C. Apgar, P. Shah, B. Menze, J. S. Barnholtz-Sloan, J. Martin, S. Bakas, 2022, 13;(1):7346
    Abstract
    Loading...
  4. Artificial intelligence-based diagnosis of asbestosis: analysis of a database with applicants for asbestosis state aid
    European Radiology
    K. B. W. Groot Lipman, C. J. De Gooijer, T. N. Boellaard, F. Van Der Heijden, R. G. H. Beets-Tan, Z. Bodalal, S. Trebeschi, J. A. Burgers, 2022, 33;(5):3557-3565
    Abstract
    Loading...
  5. The Future of Artificial Intelligence Applied to Immunotherapy Trials
    Neoadjuvant Immunotherapy Treatment of Localized Genitourinary Cancers
    Z. Bodalal, S. Trebeschi, I. Wamelink, K. G. Lipman, T. Bucho, N. Van Dijk, T. Boellaard, S. Waktola, R. G. H. Beets-Tan, 2022
    Abstract
    Loading...
  6. Breast imaging and deep learning: past, present, and future
    Advances in Magnetic Resonance Technology and Applications
    S. Eskreis-Winkler, J. Teuwen, S. Benson, 2022
    Abstract
    Loading...
  7. Ovarian imaging radiomics quality score assessment: an EuSoMII radiomics auditing group initiative
    European Radiology
    A. Ponsiglione, A. Stanzione, G. Spadarella, A. Baran, L. A. Cappellini, K. G. Lipman, P. Van Ooijen, R. Cuocolo, 2022, 33;(3):2239-2247
    Abstract
    Loading...
  8. Intracerebral Hemorrhage Segmentation on Noncontrast Computed Tomography Using a Masked Loss Function U-Net Approach
    Journal of Computer Assisted Tomography
    N. A. Coorens, K. G. Lipman, S. P. Krishnam, C. O. Tan, L. Alic, R. Gupta, 2022, 47;(1):93-101
    Abstract
    Loading...

2021

  1. An improved automatic system for aiding the detection of colon polyps using deep learning
    2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)
    L. Cai, R. Beets-Tan, S. Benson, 2021
    Abstract
    Loading...
  2. Artificial intelligence-mediated diagnosis of asbestosis
    ILD / DPLD of known origin
    K. B. W. G. Lipman, C. J. De Gooijer, T. N. Boellaard, F. Van Der Heijden, R. G. H. Beets-Tan, Z. Bodalal, S. Trebeschi, S. Burgers, 2021
    Abstract
    Loading...
  3. Pleural plaque volume correlation to lung function and artificial intelligence-driven pleural plaque quantification
    ILD / DPLD of known origin
    K. B. W. G. Lipman, T. N. Boellaard, C. J. De Gooijer, N. Bogveradze, E. K. Hong, F. Landolfi, F. Castagnoli, L. C. Cavallo, N. Lebedyeva, F. Van Der Heijden, R. G. H. Beets-Tan, Z. Bodalal, S. Burgers, S. Trebeschi, 2021
    Abstract
    Loading...
  4. Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy
    Frontiers in Oncology
    S. Trebeschi, Z. Bodalal, T. N. Boellaard, T. M. Tareco Bucho, S. G. Drago, I. Kurilova, A. M. Calin-Vainak, A. Delli Pizzi, M. Muller, K. Hummelink, K. J. Hartemink, T. D. L. Nguyen-Kim, E. F. Smit, H. J. W. L. Aerts, R. G. H. Beets-Tan, 2021, 11
    Abstract
    Loading...
  5. Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving Immunotherapy
    Frontiers in Oncology
    S. Trebeschi, Z. Bodalal, N. Van Dijk, T. N. Boellaard, P. Apfaltrer, T. M. Tareco Bucho, T. D. L. Nguyen-Kim, M. S. Van Der Heijden, H. J. W. L. Aerts, R. G. H. Beets-Tan, 2021, 11
    Abstract
    Loading...